Showing posts with label cramp. Show all posts
Showing posts with label cramp. Show all posts

Wednesday, 8 November 2017

Muscle Cramps and Exercise



Quite often runners and exercisers experience painful muscle cramping either during or immediately following a strenuous exercise bout and as a result, these types of cramps have become known as Exercise Associated Muscle Cramps or EAMCs. Much confusion surrounds the causes of EAMCs including dehydration to electrolyte imbalances. This article aims to explain the latest model for describing EAMCs, how to prevent them and how to deal with them once they occur.
What is a muscle cramp?
A muscle cramp is defined as a painful, involuntary, spasmodic contraction of a muscle. The muscle remains contracted and may last for a few seconds to several minutes. The muscles most prone to EAMCs are those that cross two joints - for example the calf muscle called the gastocnemius (crosses the ankle and knee joint) and the hamstrings (cross the knee and hip joint).
What causes an EAMC?
There are many theories surrounding the cause of muscle cramps. Some proposed causes are fluid loss and dehydration, electrolyte imbalances (sodium, potassium, magnesium), heat and congenital/inherited conditions. Recent evidence collected by Professor Martin Schwellnus at the Sports Science Institute of South Africa indicates no strong relationship between these causes and exercise cramps. After completing several studies and studying the results of other experiments using electromyography or EMG (measures muscle nerve electric activity), Schwellnus has proposed a novel model of the cause of EAMCs.
What is the new model for identifying the cause of EAMC's?
Dr. Schwellnus identifies two possible factors that may affect nerve activity - causing excessive muscle stimulation to contract and resulting in a cramp. The first suspected factor is fatigue; since motor nerve firing patterns have been demonstrated to be irregular during conditions of fatigue. The second factor is proposed as resulting from the muscle working too much on its "inner range" or "on slack".

To explain this concept it must first be understood that a muscle cannot work efficiently if it is not at its optimal length - a muscle works progressively less efficiently when overly stretched or overly loose/on slack. The protein filaments (actin and myosin) that make up muscle fibers require an optimal "overlap" to be able to generate force.
The position of the body's joints determine muscle length, so it follows that muscles that cross two joints like the gastroc and hamstrings might be more likely to operate in the slackened position and experience a cramp. For example, consider a free-style, swimmer who performs flutter kicks at the ankle with a slight knee bend. The flutter kick involves the ankle flexing and extending in a small range very near the plantarflexed (toes pointed) position. Couple this with a slight knee bend, and it makes the gastrocnemius muscle even more "passively insufficient".
Muscle physiology plays crucial role in the understanding of EAMC's. Most significantly, the small cellular bodies of the muscle spindle and the Golgi Tendon Organ (GTO). The muscle spindle is a tiny cellular structure usually located in the middle portion of each muscle fiber. Very basically its role is to "switch on" a muscle and determine the amount of activation and the strength and speed of the contraction. The GTO is a small structure located in the tendon that joins the muscle to a bone. This structure senses muscle tension and performs the opposite role of "switching off " the muscle in order to protect it from generating so much force as to rip right off the bone.
Dr. Schwellnus suggests that when a muscle works within its inner range and/or when fatigued, muscle nerve activity shifts progressively toward muscle spindle activity (contraction) and less toward GTO activity (relaxation). More specifically, the nerves that control the muscle spindle (Type IA and type II nerves) becomes overly active while the nerves that controls the GTO (Type Ib nerves) become under active or inhibited. The result of this nerve activity imbalance is an uncontrolled, painful cramp.
What do I do if I experience an EAMC?
If you should experience an EAMC, the best solution is to perform a gentle, passive stretch of the affected muscle. Do not attempt to walk or run it off. Slow, passive stretching will act to restore nerve balance to the muscle by increasing the activity of the GTO, while simultaneously minimizing that of the muscle spindle. Stretching increases tension in the tendon, which is sensed by the GTO.
The result is a relaxation of the contracted muscle and a breaking of the muscle cramp. For example, in the case of the swimmer mentioned earlier, to stretch the gastrocnemius he or she may perform a standard calf stretch while pushing against a wall or use a stretching strap or cord to pull the foot up toward the shin. To accentuate the stretch, it is important that the knee remain straight, since as mentioned this muscle crosses the knee joint.

How do I prevent EAMC's?
The best way to control and prevent EAMC's is to begin a regimented stretching routine. It may be beneficial to perform dynamic stretches after a brief warmup at the beginning of the exercise session or workout. Dynamic stretches involve using functional movements such as lunging, squatting and reaching and can be used to simultaneously train balance and core stability while sensitizing the muscles in preparation for exercise. In fact, dynamic stretches if performed correctly, may actually serve as a warm-up in themselves.
Static stretching may be more effective at the end of the exercise session as part of the cool down, as the muscles will be warm and more pliable. The best long-term solution to control EAMC's however is to restore muscle balance throughout the body by combining stretching with a well-designed functional strength training routine -concentrating specifically on core stability.
In conclusion, muscle cramping is a complex condition and this article has hopefully provided the reader with a new perspective on the scientific relationship between exercise and muscle cramping. The fact that cramps occur most often in the situations described make this model a very plausible and practical one. It is hoped that this information will assist the casual exerciser and professional athlete alike in understanding and dealing with exercise related muscle cramps.

Source:

Monday, 22 May 2017

What Is A Cramp?


When you exercise, you sometimes feel a painful sensation in your muscles. This painful sensation is often referred to as a cramp. Cramps cause severe and sudden pain in the affected area and they usually happen during exercise or vigorous activities such as running or sprinting.

There are many things that can cause cramps. One of the most common causes is overextension. When your muscles are overused or suddenly used, they tighten. This is because they are not used to such movements. Another common cause is dehydration. When your body lack fluids, the blood becomes thicker and the blood circulation becomes less efficient. As a result, your muscles cannot get the oxygen they need leading to the spasms. In addition, dehydration can also be related to electrolyte imbalance. If the amounts of potassium, sodium and calcium in your body are not balanced, your muscles will experience cramps.

Cramps can be categorized into two main types. The first type is known as the true cramp. Most people experience this type as it is caused mainly by vigorous movements and injuries. True cramps may happen during or after an exercise routine depending on the severity of the activity. They also happen when your body is injured especially when broken bones affect the muscles around them. The second type is known as the rest cramp. Rest cramps happen not when the body is inactive. For instance, if you have been sitting for many hours, your muscles become inactive and the blood circulation in your body is altered. This type can be very disruptive especially when you are sleeping. Rest cramps can also be caused by dehydration or fluid loss. They usually happen during summer when the temperature is very high. This is because your body gives off too much liquid through sweating.

There are several ways on how you can prevent your muscles from cramping. The first way is to breathe properly. Deep breaths are always advisable especially when you are exercising. If you maintain a good breathing technique, your muscles will not lack oxygen. The second way is to drink water. Since dehydration is a major cause of cramps, you need to make sure your body has the right amount of fluids all the time. This is mainly important during the summer season. The third way is to eat potassium-rich foods. This is to balance the electrolytes in your body that will aid to healthier muscles. The fourth way is to drink milk. Your muscles also need calcium therefore you need to supply them adequately. The fifth way is to avoid inactivity. You need to move your body every few hours to help the muscles loosen up. The last step is to do warm-up exercises. Before you embark on vigorous exercise routines, you need to prepare your muscles by stretching.

These are the things that you need to know about cramps. Knowing them will help you avoid painful sensations when you exercise.

 Source: